Astronomers using a CSIRO radio telescope have taken the Universe's temperature, and have found that it has cooled down just the way the Big Bang theory predicts.
Using the CSIRO Australia Telescope Compact Array near Narrabri, NSW, an international team from Sweden, France, Germany and Australia has measured how warm the Universe was when it was half its current age.
"This is the most precise measurement ever made of how the Universe has cooled down during its 13.77 billion year history,"according to Dr Robert Braun, Chief Scientist at CSIRO
Astronomy and Space Science.
Because light takes time to travel, when we look out into space we see the Universe as it
was in the past — as it was when light left the galaxies we are looking at. So to look back half-way into the Universe's history, we need to look half-way across the Universe. How can we measure a temperature at such a great distance?
The astronomers studied gas in an unnamed galaxy 7.2 billion light-years away [a redshift
of 0.89].
The only thing keeping this gas warm is the cosmic background radiation — the glow left
over from the Big Bang.
By chance, there is another powerful galaxy, a quasar (called PKS 1830-211), lying behind
the unnamed galaxy.
Radio waves from this quasar come through the gas of the foreground galaxy. As they do so, the gas molecules absorb some of the energy of the radio waves. This leaves a distinctive "fingerprint" on the radio waves.
From this "fingerprint" the astronomers calculated the gas's temperature. They found it to
be 5.08 Kelvin (-267.92 degrees Celsius): extremely cold, but still warmer than today's
Universe, which is at 2.73 Kelvin (-270.27 degrees Celsius).
According to the Big Bang theory, the temperature of the cosmic background radiation drops smoothly as the Universe expands.
"That's just what we see in our measurement," according to research team leader Dr
Sebastien Muller of Onsala Space Observatory at Chalmers University of Technology in
Sweden.
"The Universe of a few billion years ago was a few degrees warmer than it is now, exactly
as the Big Bang Theory predicts."